U WIDEVINE

Encoding and Packaging

version 1.1

Contents

Summary 4
Contact Us 4
Introduction to Encoding 4
Elementary Stream 4
Codecs 5
Containers 5
Container formats 6
Transmuxing and Transcoding 6
Video Stream Structure 7
Group of Pictures (GOP) Structure 7

Why are GOPs important? 8
Encoding media 10
Constant Bitrate (CBR) 10
Variable Bitrate (VBR) 11
Aspect Ratio 11

Using encoding profiles 12
Common encoding profiles 12

Best Practices 13
General recommendations 13
H264 Encoding Profiles 14
Example encoding syntax using ffmpeg 14
Ffmpeg parameters 14

HEVC Encoding Profiles 16
Example encoding syntax using ffmpeg 16
Ffmpeg parameters 16

VP9 Encoding Profiles 18
Example encoding syntax using ffmpeg 18
Ffmpeg parameters 18
Content Encryption 20
Encryption Recommendations from Least Secure to Most Secure 20
Playback Security Levels for Chrome and iOS 20

Using the Widevine Shaka Packager 21
Install dependencies 21
Build the Shaka Packager 21

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 2 of 27

Getting Help with Shaka Packager

Audio and Video Stream Analysis

Encrypt content
Syntax for H264 - VOD
Syntax for VP9 - VOD
Sample MPD
Content Playback

22
23
24
24
25
25
27

© 2017 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to
change and any expected future products, features or functionality will be provided on an if and when available basis. Note that the
descriptions of Google’s patents and other intellectual property herein are intended to provide illustrative, non-exhaustive examples
of some of the areas to which the patents and applications are currently believed to pertain, and is not intended for use in a legal
proceeding to interpret or limit the scope or meaning of the patents or their claims, or indicate that a Google patent claim(s) is
materially required to perform or implement any of the listed items.

Version Date Description By
1.0 11/8/2016 | Initial revision Alex Lee
1.1 2/27/2017 | Clarification updates Alex Lee

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 3 of 27

Summary

This document provides:

A basic video primer with an emphasis on generating DASH-compatible content.
Use of DASH and Common Encryption in content packaging.

Coverage of best practices and recommendations.

An introduction to the Widevine Shaka Packager.

Contact Us

For any questions, please contact Widevine from our website - www.widevine.com.

Introduction to Encoding

This section is designed to provide a quick layman’s understanding of how media is created,
what is used for media, common definitions and terminology, and supported codecs for DASH
playback.

Let’s start with the basic elements of a media file.

Elementary Stream

An elementary stream (ES) is essentially the encoding of media that’s perceptible to the user.
Every elementary stream contains a single media data type (audio, video, subtitles, captions).
The sum of several elementary streams allows for cohesive media playback experience on any
given platform.

The content of an elementary stream is dependent on the data format it holds, a codec
(coder-decoder) for video or audio. Elementary streams are broken down into frames and
encoded by codecs. A frame (or media sample) is typically referred to as a still image for video
or a few milliseconds of audio. It contains information to render a specific video or audio scene
at that specific point in time. A collection of frames would complete a video or audio clip, similar

to a flip book.

What this essentially means is audio and video content is stored as frames encoded
(compressed) by a codec. Each codec conforms to its own specifications and every codec
strives to provide the best media quality for the least amount of resources used (processing,
time, efficiency, size).

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 4 of 27

https://en.wikipedia.org/wiki/Codec
https://en.wikipedia.org/wiki/Elementary_stream
http://www.widevine.com/
https://en.wikipedia.org/wiki/Flip_book
http://www.widevine.com/contact.html

Since we are referring to audio and video content, the reference for a frame is based on time (in
milliseconds). Audio frame durations are typically within the 20-40ms range while video frames
vary and are usually expressed in terms for frames/second (fps)..

Codecs

The most common codecs used for video and audio processing in use today are:

Video Audio
AVC (H264) AAC
HEVC (H265) Opus
VP9 Vorbis
AV1 (coming soon) DTS

Dolby Digital (AC-3, EAC-3)

Codecs may be closed-source commercial products while others are open-source and
free-to-use with or without licensing requirements. Typically, codec selection is based on client
platform support. DASH presentations support multiple codecs (i.e. mixing and matching

different codecs within the same content).

Containers

Media containers are the grouping of one or more elementary streams into a data stream (in this
case, a file). A container is also a format specification that describes elements of the data
streams (timing, structure, and media information) that it holds.

The elementary stream metadata that is added to a container include (not a complete list):

e Codec type

Codec-specific configuration data
Video height and width

Video frame rate

Audio sampling rate

Audio channels

Frame timing and ordering information

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 5 of 27

https://en.wikipedia.org/wiki/AOMedia_Video_1
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Opus_(audio_format)
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
https://en.wikipedia.org/wiki/Digital_container_format
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
https://en.wikipedia.org/wiki/VP9
https://en.wikipedia.org/wiki/Advanced_Audio_Coding

Container formats

Here are examples of container formats commonly used for streaming media.

MPEG2-TS (.ts)
e Optimized for transmission over a closed network for broadcast systems.

ISO-BMFEFE (.mp4)

e Designed as a next-generation container format by Apple and adopted by ISO/IEC.
There are multiple file extensions allowed for this format, however, we are focused on
MPEG4 (mp4).

e All data within this format is organized into boxes. Each box type represents a different
type of data element contained within. Boxes may also contain other boxes.

e Fragmented MP4 is a variant of ISO-BMFF optimized for streaming.

Matroska (.mkv, .webm)
e An open-sourced container format that is designed to be more efficient than ISO-BMFF.
e Uses a more compact version of metadata representation compared to MPEG4, which

potentially leads to a faster startup time for playback.

When creating DASH compliant media, the specification requires only a single elementary
stream be present per container.

Now that we have covered what media files consist of, how are these files created?

Transmuxing and Transcoding

Transcoding is a processing of an elementary stream consisting of decoding followed by
re-encoding to the same or another codec, while potentially altering its encoding characteristics
(video resolution, bitrate, audio sampling rate, etc.) . The resulting elementary stream may be
stored in a different container format than the original.

Transmuxing is the act moving elementary streams from one container format to another without
manipulating the actual streams. All audio visual data remains unchanged.

Transmuxing is a less processing-intensive effort compared to transcoding.

Why is transmuxing useful?
To deliver the same content to different platforms that support varying formats.

For example:

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 6 of 27

https://en.wikipedia.org/wiki/MPEG_transport_stream
https://en.wikipedia.org/wiki/ISO_base_media_file_format
https://en.wikipedia.org/wiki/Matroska
https://en.wikipedia.org/wiki/Transcoding

To deliver identically encoded streams over different delivery network to separate devices, using
MPEG2-TS for a IPTV cable box (i.e. Comcast Cable) and ISO-BMFF for DASH streaming to an
Android phone (Comcast Xfinity).

Why is transcoding useful?
e Optimize media for better user experience on playback.
e Caters to the adaptive streaming use-case where different media stream qualities are
generated to meet varying bandwidth requirements.
e To deal with device playback constraints. The media format applicable for one device
may not be compatible with another; as such, the media must be converted.
e To meet business needs
o Varying levels of quality to meet device streaming capacity
o Contractual obligations

The next section covers the structure of a video stream.

Video Stream Structure

I|P|(P|B|P|P|P|I|P|P|P|[B|P|P

Figure 1 - represents an arbitrary section of a video stream.

As previously stated, video is represented as a sequence of frames over time, where there are
groupings of frames that are similar in representation.

Group of Pictures (GOP) Structure

A GOP is:
e a self-contained decodable sequence of frames.
e normally represented as a short sequence of pictures.
e begins with a key frame, and ends before the next key frame..

There are different types of frames contained in a GOP:
e |-frame (Intra)
o An I-frame (Intra-coded) is a full picture, much like a standard JPEG image file.
a.k.a a key frame.
o Every GOP starts with an I-frame as it represents a complete visual
representation of a picture.

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 7 of 27

https://en.wikipedia.org/wiki/Video_compression_picture_types
https://en.wikipedia.org/wiki/Group_of_pictures

o Because it contains the complete picture, an I-frame is usually larger in size
compared to other frame types.
o Also known as a key frame.
e P-frame (Predictive)
o Contains differences in the picture from previous frames.
e B-frame (Bi-Predictive)
o Similar to a P-frame, but may be encoded as differences from subsequent
pictures. Because of this, it is usually decoded out of order.

If I-frames are so complete, why is there a need for P or B frames? Media consisting of all
I-frames would be very large, rendering it unusable for mass consumption. B and P frames are
a fraction of the size of an I-frame (since they only display the picture differences).

Why are GOPs important?
e Allows for seek points.

o Provides the ability to move forward or backward in the video and always have
the ability to start by displaying a complete picture (the I-frame). A P-frame or
B-frame will only display the visual differences from preceding or successive
pictures, not a complete picture.

e Enables higher efficiency for encoding.

o Inserting an I-frame at scene changes allows for smaller B and P frames,
reducing file size.

o A scene change is a sequence of pictures that has no reference to previous
pictures. An example of a scene change is when the camera angle changes.

e Facilitate video adaptation.

o A video decoder must always start from an I-frame to provide a proper picture
reference point.

o Video adaptation is performed by switching from poor quality media to high
quality media (or vice versa). Without using I-frames, the end-user visual
experience would be extremely poor because the act of switching video quality
will potentially render B or P frames (going from a full picture render to partial).

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 8 of 27

2mbps

4mbps

6mbps

r ep|pPp, 1P, I|P|I|P|P|I|P|P|B

Figure 2 - represents 3 video streams with aligned GOPs (i-frames).

There are 2 types of GOP.
e Open
o Open GOPs start with a B-frame that is able to look at the last P-frame from the
preceding GOP as well as the first I-frame of its own GOP.
o An open GOP has a reliance on the preceding GOP.
e Closed
o Closed GOPs cannot contain any frame that refers to a frame in the previous or
next GOP.
o A closed GOP is usually required when generating media to allow a smoother
adaptation experience.

A GOP length or size is dependent on the number of frames per GOP. A longer GOP is more
efficient (a larger grouping of similar pictures), however, provides fewer seek or adaptation
points.

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 9 of 27

https://documentation.apple.com/en/compressor/usermanual/index.html#chapter=18%26section=5%26tasks=true

Encoding media

High A

=

"

=

=%

E

o

&
________.-mdl
Opening credits

)

Dialogue

f’“"__"

Action Seguence
I

l\\ '
\ | Transport Scenery
)
!
ey

Villian eaptured

Media Timeline

Figure 3 - represents examples of varying complexity based on media timeline.

Media is not uniform. For example, a movie will contain many scenes - action sequences,
dialogues, romance and more. The amount of data required to encode a scene depends on
how much the frames change between one and the next (complexity). An action sequence
would require more data to encode correctly compared to a scene of a sleeping baby.

There are many considerations for encoding, however, the primary decision first comes down to

bitrate.

Constant Bitrate (CBR)

CBR refers to content that is encoded at a specific bitrate, uniformly across its entirety.

e.g. 6 Mbit/sec = 1 second of media requires 6MB

Widevine DRM - Encoding and Packaging

version 1.1 - 2/27/2017 - Page 10 of 27

https://en.wikipedia.org/wiki/Constant_bitrate

For a low-complexity scene, a CBR configuration will force the codec to add padding (empty
data) to meet the desired bitrate since it has to be constant.

For a high-complexity scene, a CBR configuration will force the codec to compromise on scene
quality if the required data to render the scene exceeds the CBR limit. The scene is too
complex to store in the amount of information allowed, resulting in graininess, artifacts, skipping.

Variable Bitrate (VBR)

BR allows the codec to use fewer bits when it is not needed, saving them for more complex
scenes.

The basic principle is to set a target bitrate and allow for some level of variance over the length
of the media, to achieve the overall target bitrate.

VBR is generally recommended as it results in higher-quality encodings compared to CBR
encodings at the same bit rate.

What happens when the bitrate exceeds the target for extended periods of time? The end-user
device will be unable to display the frames correctly since it's expecting X bitrate but receiving
X+Y bitrate instead. This can be shown as stuttering and artifacts (pixelation).

To work around these limitations, a video buffer verifier (VBV) is specified. The VBV manages
VBR variance. It specifies a maximum bitrate over a rolling buffer.

In our tests, for the majority of current devices, the VBV should be set to twice the target bitrate.

Aspect Ratio

Aside from bitrate, there are other parameters to control the display or viewing of pictures -
namely, the aspect ratio to preserve the original picture, preventing visual distortion.

There are 3 distinctions of aspect ratio - Sample Aspect Ratio, Pixel Aspect Ratio and Display
Aspect Ratio.

The display aspect ratio is most understood and referred to when discussing aspect ratios. It is
a reflection of what we see in media. References to terms like 4:3 or 16:9 refer to the display
aspect ratio. A common method is to define the display aspect ratio (DAR) and let your encoder
software calculate the SAR and PAR accordingly.

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 11 of 27

https://www.animemusicvideos.org/guides/avtech3/theory-videoaspectratios.html
https://en.wikipedia.org/wiki/Video_buffering_verifier
https://en.wikipedia.org/wiki/Pixel_aspect_ratio
https://en.wikipedia.org/wiki/Variable_bitrate
https://en.wikipedia.org/wiki/Aspect_ratio_(image)

Using encoding profiles

Encoding profiles refer to a set of parameters that generates media with specific properties. For
example, an encoding profile for SD vs HD content would not be identical as there would be, at
minimum, a change in the display resolution.

These profiles vary per codec. Every codec defines its own specification and features - for
example: H264 uses Baseline, Main and High profiles. Even more importantly, encoding profile
support varies from device to device. Therefore, it is paramount to ensure that a device is a
capable of playback for any given encoding profile.

Common encoding profiles

Codec Profiles

AAC AAC-LC
AAC-HE (SBR - spectral band replication)
AAC-HEvV2 (SBR and PS - parametric stereo)

VP9 0 (8-bit)
1 (8-bit)
2 (10-bit) (12-bit)
3 (10-bit) (12-bit)

H264 Baseline, Main, High

H265 Main, Main10

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 12 of 27

Best Practices

The section outlines a series of recommendations and best practices from encoding to
encryption and enabling playback on various client platforms. These recommendations serve
as guidance on the design and implementation of EME, CENC, DASH support from Widevine
for both server and client pieces. To ensure maximum playback compatibility across all client
platforms, the lowest common denominator for encoding profiles should be used.

The table below illustrates the most common audio and video codec combinations for various
video resolutions:

Resolution Widevine Client Security Level Video Codec Audio Codec

SD L3 H264 (MP4) AAC
HD L1 H264 (MP4) AAC
DTS

Dolby Digital
UHD L1 HEVC (MP4) AAC
VP9 (WebM) DTS

Dolby Digital

General recommendations
e Use variable bitrate (VBR) tracks with a reasonable video buffer verifier (VBV) value.
o VBV = 1.5 - 2x target bitrate.

All files must have closed GOPs and identical IDR frame structure.
IDR frame separation — approx 3 seconds (lowest value consistent with good image
quality).
Key frames must be at the same exact intervals across all track types.
DASH REQUIREMENT - 'moov' atom should immediately follow the 'ftyp' atom.
ISO-BMFF Chunks should contain no more than 1 second worth of sample data.

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 13 of 27

H264 Encoding Profiles

(referenced from the Android Compatibility Definition Document)

Video Resolution Profile and Level Bitrate FPS GOP
240p Baseline 3.0 800 kbps 24 3s
480p Main 3.1 2000 kbps 24 3s
720p Main 4.0 8000 kbps 24 3s
1080p High 4.2 20000 kbps 24 3s
4K / UHD High 5.1 30000 kbps 24 3s

Example encoding syntax using ffmpeg

ffmpeg -1 <source_file> -an \
—-vf "scale=1280:trunc (ow/a/2)*2" \
-c:v 1ibx264 -profile:v main -level:v 4.0 \

-x264opts scenecut=0:open gop=0:min-keyint=72:keyint=72 \

-movflags +faststart \
-minrate 2M -maxrate 2M -bufsize 3M -b:v 2M <output file>

Ffmpeg parameters

Parameter Description
-an No audio, video only
-vf The options used here will resize the video to the desired resolution while
maintaining the original aspect ratio
-c.v libx264 Selects the codec library
-profile Specifies the codec profile
-level Specified the codec level
-x2640pts Declares additional options:

Enforce closed GOPs
Specify 3s GOP intervals (72 for 24fps source content)

-movflags +faststart

Optimizes the output MP4 file format for streaming

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 14 of 27

https://source.android.com/compatibility/android-cdd.html

-minrate Minimum bitrate
-maxrate Maximum bitrate
-b:v Target bitrate

-bufsize Video buffer size

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 15 of 27

HEVC Encoding Profiles

(referenced from the Android Compatibility Definition Document)

Video Resolution Profile and Level Bitrate FPS GOP
240p Main 3.0 600 kbps 24 3s
360p Main 3.0 1600 kbps 24 3s
480p Main 3.0 3000 kbps 24 3s
720p Main 3.1 4000 kbps 24 3s
1080p Main 4.1 10000 kbps 24 3s
4K/ UHD Main10 5.1 20000 kbps 24 3s

Example encoding syntax using ffmpeg

ffmpeg -1 <source_file> -an \

-vf "scale=1280:trunc (ow/a/2)*2" \

-c:v 1ibx265 \

-x265-params

level=4.0:scenecut=0:0pen gop=0:min-keyint=72:keyint=72 \
-movflags +faststart \

-minrate 4M -maxrate 4M -bufsize 6M -b:v 4M <output file>

Ffmpeg parameters

Parameter Description

-an No audio, video only

-vf The options used here will resize the video to the desired resolution while
maintaining the original aspect ratio

-c:v libx265 Selects the codec library

-x265-params Declares additional options:

Specify HEVC level
Enforce closed GOPs
Specify 3s GOP intervals (72 for 24fps source content)

-movflags +faststart Optimizes the output MP4 file format for streaming

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 16 of 27

https://source.android.com/compatibility/android-cdd.html

-minrate Minimum bitrate
-maxrate Maximum bitrate
-b:v Target bitrate

-bufsize Video buffer size

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 17 of 27

VP9 Encoding Profiles

(referenced from the Android Compatibility Definition Document)

Video Resolution Profile and Level Bitrate FPS GOP
240p Profile 0 (8-bit) 600 kbps 24 3s
360p Profile 0 (8-bit) 1600 kbps 24 3s
720p Profile 0 (8-bit) 4000 kbps 24 3s
1080p Profile 0 (8-bit) 5000 kbps 24 3s
4K/ UHD Profile 2 (10-bit) 20000 kbps 24 3s

Example encoding syntax using ffmpeg

ffmpeg -1 <source_file> \

—-vf "scale=1280:trunc (ow/a/2)*2"™ \

-c:v libvpx-vp9 -keyint min 72 -g 72 -profile:v 0 \
-threads 4 -tile-columns 6 —-frame-parallel 1 \
-speed 1 -auto-alt-ref 1 -lag-in-frames 25 \

-an -minrate 4M -maxrate 4M -bufsize 4M -b:v 4M \
-f webm -dash 1 <output file>

Ffmpeg parameters

Parameter Description

-an No audio, video only

-vf The options used here will resize the video to the desired resolution while
maintaining the original aspect ratio

-c:v libvpx-vp9 Selects the codec library

-profile:v Specifies VP9 profile

-f webm Specifies webm container output

-keyint_min Specifies minimum keyframe interval

-g Specifies keyframe interval

-threads 4 libvpx options optimized for VOD streaming media

-tile-columns 6

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 18 of 27

https://source.android.com/compatibility/android-cdd.html

-frame-parallel 1
-speed 1
-auto-alt-ref 1
-lag-in-frames 25
-dash 1

See the VP9 Encoding Guide.

-minrate Minimum bitrate
-maxrate Maximum bitrate
-b:v Target bitrate

-bufsize Video buffer size

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 19 of 27

http://wiki.webmproject.org/ffmpeg/vp9-encoding-guide

Content Encryption

Encryption best practices can be distilled into a simple statement: separate keys should be used
across different types of content (audio, video, resolution).

Encryption Recommendations from Least Secure to Most Secure

Audio Video
No encryption Single content key for all tracks
Separate content key for audio tracks Separate content key for each video resolution

group (SD, HD, UHD)

Separate content key for audio tracks Separate content key for each video track

Playback Security Levels for Chrome and iOS

The recommended security level setting for VIDEO tracks will be to specify
SW_SECURE_DECODE. The only supported security level setting for AUDIO tracks is
SW_SECURE_CRYPTO. Security level settings are specified by your license proxy
implementation on a per track basis. The table below provides the recommended security level
settings per Chrome platform.

Platform Video Audio
Browser (PC, Mac, Linux) SW_SECURE_DECODE (L3) SW_SECURE_CRYPTO (L3)
i0S
ChromeOS SW_SECURE_DECODE (L3) SW_SECURE_CRYPTO (L3)
HW_SECURE_ALL (L1)

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 20 of 27

Using the Widevine Shaka Packager

Widevine provides a reference open-source CENC packaging solution - Shaka Packager. The
GiHub page provides documentation on how to build and use the packager. We highly
recommend joining the GitHub user group to keep up with the latest information and to ask
questions.

The following sections covers how to install and use the Shaka Packager.

Install dependencies

The Shaka Packager supports a variety of OSes, this section of the document will focus on
using Ubuntu Linux (14.04 or higher). For the sake of simplicity, all commands are executed as
user=root.

To ensure you have the basic build environment, run the following commands as user=root :
apt-get install -y build-essential gcc wget git g++ subversion

It should also prompt to install any additional dependencies, say Yes.

Build the Shaka Packager

You may now execute the commands as a normal Linux user.

1. Packager source is located at https://github.com/google/shaka-packager

2. Pull gclient and ninja from Chrome Depot Tools:

S git clone
https://chromium.googlesource.com/chromium/tools/depot tools.git

3. Add depot_tools to your PATH:

$ export PATH=$PATH: pwd’/depot tools

a. Note that the above command contains a ™ (back quote).
b. You may want to add this to your .bashrc file or your shell's equivalent so that
you don’t need to reset your SPATH manually each time you open a new shell.

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 21 of 27

https://github.com/google/shaka-packager
https://groups.google.com/forum/#!forum/shaka-packager-users
https://chromium.googlesource.com/chromium/tools/depot_tools.git
https://github.com/google/shaka-packager

4. Run the following commands in sequence.

$ mkdir shaka-packager

$ cd shaka-packager

$ gclient config https://www.github.com/google/shaka-packager.git
--name=src

$ gclient sync

5. Run the following to verify the directories were created:

$ 11 src/

6. Build using ninja to create the reference binaries for use. This takes a while, grab a cup
of coffee.

$ ninja -C src/out/Release

7. Verify the binaries exist.
$ cd src/out/Release && 1ls

The following binary files will be used:
a. packager

i. Used to analyze and encrypt media files
b. mpd_generator
i. Used to generate playlist files

For ease of use, you can add the Release directory to your PATH or copy the 2 binaries to a
directory in your PATH:

$ export PATH=$PATH:$HOME/shaka-packager/src/out/Release

Getting Help with Shaka Packager

To view available options, run:

$ packager --help
$ mpd _generator --help

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 22 of 27

Audio and Video Stream Analysis

Use the ——dump stream info to analyze your audio and video streams

Example

$ packager input=~/llama h264 main 480p 1000.mp4 --dump_stream info

[0921/220412:INFO:demuxer.cc (58)]
'llama h264 main 480p 1000.mp4"'.

File "llama h264 main 480p 1000.mp4":
Found 1 stream(s) .

Stream [0] type: Video

codec string: avcl.4d401f

time scale: 12288

duration: 1843712 (150.0 seconds)
is_encrypted: false

codec: H264

width: 858

height: 482

pixel aspect ratio: 3856:3861
trick play rate: 0
nalu length size: 4

Packaging completed successfully.

Understanding the output:

Initialize Demuxer for file

Found <#> stream(s)

Number of streams found in the content
file

For DASH compliance,
value to be 1.

you’ll want this

Stream [0] type:

Specifies the stream number and if it is
video or audio

codec_string:

Indicates video codec and profile.

This will match the MPD data.

time scale:

The number of time units that pass per
second in its time coordinate system. A
time coordinate system that measures time
in sixtieths of a second. See ISO-BMFF
spec for additional details.

duration

Expressed in seconds

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 23 of 27

language: language of the video

is_encrypted: Determines if content is encrypted

codec: video codec

width: Video width

height: Video size

nalu length size : Network Abstraction Layer Units -
typically expressed in 1, 2, or 4 bytes

Encrypt content

Shaka Packager allows for single and multi-file encryption. It's optimal to package all your
content in a single command - encrypt all tracks and generate the MPD.

To encrypt using the Widevine Cloud License Service, you will need
a. A Content ID - a value that identifies the media that is being packaged.

To generate a random content ID (in hex)

S echo -n <random alphanumeric string> | xxd -p

b. The proper credentials to access the License Service.

The widevine test credentials in the Widevine License Service Test environment is
available for testing purposes.

Provider = widevine test
IV = d58ce954203b7¢c9a9a9d467£59839249
KEY = lae8ccd0e7985cc0b6203a55855a1034afc252980e970ca90e5202689£947ab9

Syntax for H264 - VOD

$ packager \

input=/root/llama audio_aac_128k.mp4,stream=audio,output=enc_llama audio.mp4
\
input=/root/llama_h264 baseline 360p 600.mp4,stream=video,output=enc_llama h
264 360p.mp4 \

input=/root/llama h264 main 480p 1000.mp4,stream=video,output=enc_llama h264
_480p.mp4 \
input=/root/llama_h264 main_ 720p 3000.mp4,stream=video,output=enc_llama h264

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 24 of 27

_720p.mp4 \
input=/root/llama_h264 high 1080p 6000.mp4,stream=video,output=enc_llama h26
4 1080p.mp4 \

--enable widevine encryption \

--key server url
"https://license.uat.widevine.com/cenc/getcontentkey/widevine test" \
--content_id "<hex output>" \

--signer "widevine test" \

--aes_signing_ key
"lae8ccd0e7985cc0b603a55855a1034afc252980e970ca90e5202689f947ab9 \
--aes_signing_iv "d58ce954203b7c9%9a%a9d467£59839249 \

--crypto_period duration 0 \

--mpd output llama h264.mpd

Syntax for VP9 - VOD

S packager \
input=/root/llama_audio_aac_128k.mp4,stream=audio,output=enc_llama audio.mp4
\

input=/root/llama vp9 360p_ 300.webm,stream=video,output=enc_llama vp9 360p.w
ebm \
input=/root/llama_vp9 480p 500.webm,stream=video,output=enc_llama vp9 480p.w
ebm \
input=/root/llama_vp9 720p_ 1500.webm,stream=video,output=enc_llama vp9 720p.
webm \
input=/root/llama_vp9 1080p 3000.webm,stream=video,output=enc_llama vp9 1080
p.webm \

--enable widevine encryption \

--key server url
"https://license.uat.widevine.com/cenc/getcontentkey/widevine test" \
--content_id "<hex output>" \

--signer "widevine test" \

--aes_signing_ key
"lae8ccd0e7985cc0b6D3a55855a1034a£c252980e970ca%90e5202689£947ab% \
--aes_signing_iv "d58ce954203b7c9%9a%a9d467£59839249 \

--crypto_period duration 0 \

--mpd output llama vp9.mpd

Sample MPD

Below is a sample MPD for Shaka Packager encrypted content.

<?xml version="1.0" encoding="UTF-8"?>
<!--Generated with https://github.com/google/edash-packager version

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 25 of 27

e0e0925-release-->
<MPD xmlns="urn:mpeg:dash:schema:mpd:2011"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xsi:schemalocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
xmlns:cenc="urn:mpeg:cenc:2013" minBufferTime="PT2S" type="static"
profiles="urn:mpeg:dash:profile:isoff-on-demand:2011"
mediaPresentationDuration="PT734.1666870117188S">
<Period id="0">
<AdaptationSet id="0" contentType="audio" lang="en">
<Representation i1id="0" bandwidth="132252" codecs="mp4a.40.2"

mimeType="audio/mp4" audioSamplingRate="44100">

<AudioChannelConfiguration
schemeIdUri="urn:mpeg:dash:23003:3:audio channel configuration:2011"
value="2"/>

<ContentProtection value="cenc"
schemeIdUri="urn:mpeg:dash:mp4protection:2011"
cenc:default KID="815f3b3b-cl65-5415-886b-e6b837£7663f"/>

<ContentProtection
schemeIdUri="urn:uuid:edef8ba9-79d6-4ace-a3c8-27dcd51d21led">

<cenc:pssh>AAAAaHBzc2gAAAAATe+LgXnWSs6]jyCEfclROh7QAARAAEGIARIQIPZ2phZEUVO+EFNnPYD]
XwBIQW235Y6rUXreKuHgFkSvFESxIQgV8708F1VBWIa+adN/dmPxoFY3dpcDE1iBRIOVmeIMgA=</ce
c:pssh>
</ContentProtection>
<BaseURL>enc tears audio.mp4</BaseURL>
<SegmentBase indexRange="1001-1920" timescale="44100">
<Initialization range="0-1000"/>
</SegmentBase>
</Representation>
</AdaptationSet>
<AdaptationSet id="1" contentType="video" width="720" height="300"
frameRate="12288/512" par="12:5">
<Representation id="1" bandwidth="686572" codecs="avcl.42c0le"
mimeType="video/mp4" sar="1:1">
<ContentProtection value="cenc"
schemeIdUri="urn:mpeg:dash:mp4protection:2011"
cenc:default KID="24f676a6-1644-52f3-bel6-73d80e3517c0"/>
<ContentProtection
schemeIdUri="urn:uuid:edef8ba9-79d6-4ace-a3c8-27dcd51d21led">

<cenc:pssh>AAAAaHBzc2gAAAAATe+LgXnWSs6]jyCEfclROh7QAARAAEGIARIQIPZ2phZEUVO+EFNnPYD]
XwBIQW235Y6rUXreKuHgFkSvESxIQgV8708F1VBWIa+adN/dmPxoFY3dpcDE1iBRIOVmeIMgA=</ce
c:pssh>

</ContentProtection>

<BaseURL>enc tears video.mp4</BaseURL>

<SegmentBase indexRange="1127-1902" timescale="12288">

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 26 of 27

<Initialization range="0-1126"/>
</SegmentBase>
</Representation>
</AdaptationSet>
</Period>
</MPD>

Content Playback

Once the encrypted media is staged on a web-accessible URL, it is available for
playback. Widevine’s open-source reference Shaka Player is recommended to test and
validate playback.

The Shaka Player public demo is configured to automatically enable playback of
encrypted content (using the widevine test credentials).

Widevine DRM - Encoding and Packaging
version 1.1 - 2/27/2017 - Page 27 of 27

https://github.com/google/shaka-player
http://shaka-player-demo.appspot.com/

