wg ¥ WIDEVINE

Widevine DRM
Common Encryption API

Version 1.7

Revision History

Date Description
10/08/2014 e Updated test player and content urls.
07/30/2013 e Updated Key Id (tracks.key_id). Type is 128 bit binary returned as Base64 encoded
string.

e Updated Content Id. Type is binary specified as a Base64 encoded string. Size
cannot exceed 1024 bytes.

08/02/2013 e Change single Widevine PSSH to an array containing Widevine and PlayReady. New
field in response is called content_protection.

03/21/2014 e Add new fields to support live streaming with key rotation.
o first_crypto_period_index
o crypto_period_count

01/13/2015 e Added section describing inserting a PSSH into a MPD
e Updated demo player section with Widevine Shaka Player links
04/21/2015 e Updated signature requirements
01/22/2016 e Added drm_types array to the encryption request to support PlayReady.
02/29/2016 e Add crypto_period_seconds.
06/28/2016 e Updated Widevine proto.
03/05/2017 e Updated to add optional group_id in support of license embedding.
03/29/2018 e Updated with changes to the pssh in support of entitlement keys.
e Added appendix describing entitlement keys.
08/20/2018 e Details on entitlement licensing.
v1.6 e Updated WidevinePsshData proto to include deprecated fields.
02/14/2019 e Updated PSSH proto.
v1.7

© 2019 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to
change and any expected future products, features or functionality will be provided on an if and when available basis. Note that the
descriptions of Google’s patents and other intellectual property herein are intended to provide illustrative, non-exhaustive examples
of some of the areas to which the patents and applications are currently believed to pertain, and is not intended for use in a legal
proceeding to interpret or limit the scope or meaning of the patents or their claims, or indicate that a Google patent claim(s) is
materially required to perform or implement any of the listed items.

Google - Confidential Page 2 of 18

Contents

Introduction 4
Description 4
Details 4
Authentication 4
Request 4
Signing the request 6
Multiple requests using the same Content Id with different track types. 7
Multiple requests using the same Content Id with same track types. 7
Response 8
Signing the response 10
Status codes 10
PSSH 12
PSSH in the MPD 15
Test Player 16
Demo URLs for players 16
Content URL 16
Appendix 17
Sample Request 17
Signing 18
Entitlement Keys 19

Google - Confidential Page 3 of 18

Introduction

This document specifies an interface for adding support for Google’s Widevine encryption to a
video processing system. The interface allows the encryption process to request and receive
the Widevine header and encryption key.

Description

The encryption process sends an HTTP(s) request to the Key server. The request contains the
unique content identifier (Contentld). The Contentld is owned by the encryption process. The
Key server will respond with Protection System Specific Header (PSSH) data for Widevine and
Content Key(s) that are associated with the Contentid.

e All Base64 encoded strings use the standard encoding specified in RFC 4648.

e Widevine SystemID for the PSSH

0 edef8ba979d64aceal3c827dcd5ld21ed
e DASH MPD Content Protection type: “widevine”

Details

Authentication

The protocol described in this documents supports the ability for the client and server to
optionally sign the message. The method described here is the client will sign the request by
using the client’'s AES key and Widevine will sign the response using Widevine’'s RSA key.

Request
The request is an HTTP POST request to the KeyServer URL.
The posted data is a JSON formatted (optionally signed) request with the following syntax:

{
"request":"<message>",
"signature":"<signature>",
"signer":"<signer name>"
}
Name Value Description
request Base64 encoded string. Required field.

The actual message. This is a serialized
JSON message containing the request or
the response. The message is in the clear.

Google - Confidential Page 4 of 18

signature Base64 encoded string. Optional field.
RFC 4648 Required for access to Widevine Cloud
License Service.

AES CBC encryption of the SHA1 hash of
<message>.

signer string Required.
Identifies the entity sending the message.

The clear <request> is a JSON formatted string containing the content id and the track types.
Content may have one or more track types, for example, the audio track may be encrypted with
a different key than the SD video track. Or the content may have an SD video track and an HD
video track encrypted with different keys.

{
"content_id":"dGVzdC1jb250ZW50MQ=="",
"tracks":[
{
"type":"HD"
¥
{
"type":"SD"
¥
{
"type":"Audio"
}
1,
"drm_types": [
"WIDEVINE"
]
}
Name Value Description
type One of: Required.
HD, SD, AUDIO Label to identify the track type. It's OK for
(may not be limited to multiple requests to specify the same track type.
this set of types) In this case, the same key id and key is returned
for each track of the same type.
potiey string— <DEPRECATED>
Aseit — 1024 : . .
Name E_I & previousy Ets'.sf POHOY to-tise of this
bytes .EEF 'EE“E. Fhe 'Ef tey-contains 'E.IEWIE. an E Et".EmEF“

Google - Confidential Page 5 of 18

I y de-al-poli

encoded string.

" ot " it
content_id Base64 encoded string | Required.
- Unique identifier of the content. The content_id
Binary, max size = will be available in the license request.
1024 bytes.
token Optional base64 If present, the 72-byte token from a Widevine

keybox. Content keys in the response will be
AES- or 3DES-encrypted using the device key
associated with this token, and thus the
response will only usable by a device with that
keybox.

rsa_public_key

Optional RSA public
key in Base64
DER-encoded PKCS#1
format.

If present, a random session_key encrypted with
this public key will be included in the response.
Content keys in the response will be AES-ECB
encrypted with the session key.

first_crypto_period_index

32 bit unsigned int

Used for key rotation only.

The time value for the first key period for which
keys are requested, divided by the period
duration. Perhaps epoch or media time.

crypto_period_count

32 bit unsigned int

Used for key rotation only.
Number of keys requested.

crypto_period_seconds

32 bit unsigned int

Used for key rotation only.
Number of seconds in each crypto period.

name strings.

drm_types Optional enumerated Used to request pssh data conforming to
drm type identifier. non-widevine drm.
group_id An optional list of group | Used to create content groups for packaging..

When provided in a request, any returned
Widevine PSSH will contain grouping
information.

The format of group_id is defined by the
provider.

Example: “ChannelGroup2000”

Signing the request

e Generate the JSON-string.
Json::StyledWriter writer;
std::string clear_message = writer.write(root);

e Sign the message.

Google - Confidential

Page 6 of 18

o Generate SHA1 hash of the message. Result is 20 bytes string.
o Encrypt the 20 byte hash.

m For AES: CBC, PKCS5 padding

m For RSA: RSA-PSS, PKCS1.5 padding, Salt length=20.

Multiple requests using the same Content Id with different track types.
It is possible for the client to send multiple requests for content keys with the same content Id
(c_id)) but with different track types. For example,

e request #1: content Id = CID, track type = SD.

e request #2: content Id = CID, track type = AUDIO.

In this case, the KeyServer will return a response for each request as follows:
e response #1: status = OK, content Id = CID, key Id = KID_1, content key = CKey_1,
track type = SD
e response #2: status = OK, content Id = CID, key Id = KID_2, content key = CKey_2,
track type = AUDIO.

Multiple requests using the same Content Id with same track types.
If multiple requests are sent with the same content Id and same track type, the first response
will contain the same key Id and content key. The second response will also succeed and field
indicating already used.

e request #1: content Id = CID, track type = SD.

e request #2: content Id = CID, track type = SD.

In this case, the KeyServer will return a response for each request as follows:
e response #1: status = OK, content Id = CID, key Id = KID_1, content key = CKey 1,
track type = SD.
e response #2: status = OK, content Id = CID, key Id = KID_1, content key = CKey 1,
track type = SD, already_used = true.

Google - Confidential Page 7 of 18

Response
If signed, the response is a JSON formatted string.

{ " n

"response":"<message>",

"signature":"<signature>"

}

Where <message> is a JSON formatted string. For each track type in the request, there is a
key and key_id in the response. The actual <message> in the response is serialized JSON:

{
"status":"OK",
"drm": [
{
"type":"WIDEVINE",
"system_id":"edef8ba9-79d6-4ace-a3c8-27dcd51d21ed”
}s
{
"type":"PLAYREADY",
"system_id":"79f0049a-4098-8642-ab92-e65be@885f95"
}
1,
"tracks":[
{
"type":"HD",
"key_id":"a2V5aWQtMDAXx",
"key":"MTIzNDU2Nzg5MDEyMzQ1Ng==",
"iv":"MDAWMDAWMDAWMDAWMDAWMA==",
"pssh":[
{
"drm_type": "WIDEVINE",
"data":"c2FtcGx1LXBzc2g="
¥
{
"drm_type":"PLAYREADY",
"data":"c2FtcGx1LXBzc2g="
}
]
bs
{
"type":"SD",
"key_id":"a2V5aWQtMDAy",
"key" : "MjMONTY30DkwMTIzNDU2MQ=="",
"iv":"MDAWMDAWMDAWMDAWMDAWMA==",
"pssh":[
{
"drm_type": "WIDEVINE",
"data":"c2FtcGx1LXBzc2g="

Google - Confidential Page 8 of 18

}s

{
"drm_type" :"PLAYREADY",

"data":"c2FtcGx1LXBzc2g="

"type":"Audio",
"key_id":"a2V5aWQtMDAz",

"key" : "MzQINjc40TAXMIMONTYxMg=

"iv" : "MDAWMDAWMDAWMDAWMDAWMA==",
"pssh":[
{
"drm_type" :"WIDEVINE",
"data":"c2FtcGx1LXBzc2g="

}s

{
"drm_type":"PLAYREADY",
"data":"c2FtcGx1LXBzc2g="

}

]
}
1,

"content_id":"dGVzdC1jb250ZW50MQ==

_mn
-

Name Value

Description

string

See Status Codes table below.

If successful, OK is returned. Otherwise an error
code is returned to indicate failure.

session_key Base64 encoded binary string

Optional AES-128 bit random key used to encrypt
the content keys. The session_key is encrypted
with the client’'s RSA key specified in the request.

array of JSON struct.

A list of DRM systems.

String. The DRM system.
one of:
“WIDEVINE”
“PLAYREADY”
drm.system_id string Registered system Id for the DRM system.

tracks.pssh

array of JSON struct

A list of PSSH, one per DRM system.

Google - Confidential

Page 9 of 18

tracks.pssh.drm_
type

string

The DRM system for a specific piece of PSSH

tracks.pssh.data

Base64 encoded string

PSSH (protection system specific header) data.
The PSSH data is unique per track.

tracks.key id

Base64 encoded string

Binary, 16 bytes

Unique identifier for the key.

tracks.type One of: Identifies the track type encrypted with this key.
HD These values are extracted from the request.
SD
AUDIO

tracks.key Base64 encoded string Content key. If the session_key is specified, the

Binary, 16 bytes

content key is AES-ECB encrypted with the
session key. The session key is generated by the
DRM server and encrypted with the content
provider’'s public key using RSA-OAEP(sha1,
mgfisha1). The encrypted key is Base64
encoded.

already_used

Boolean

Set to true if the key_id was previously issued.
This can happen if a previous key request from
the same signer with the same content_id and
track_type was sent.

Signing the response
e Generate the JSON-string.
Json::StyledWriter writer;
std::string clear_message = writer.write(root);

e Sign the message.
RSA-PSS

Status codes

Code

Description

OK

Success.

SIGNATURE_FAILED

The server was unable to authenticate the message. Perhaps:
e The specified <signer> is unknown
e The <signature> was not specified, but is required in this
case.

Google - Confidential

Page 10 of 18

CONTENT_ID_MISSING

<content_id> field is missing in the request.

POLICY_UNKNOWN

The specified <policy> was not found for this <signer>.

TRACK_TYPE_MISSING

<tracks.type> is missing in the request.

TRACK_TYPE_UNKNOWN

The specified <tracks.type> is not one of the allowed values.

MALFORMED_REQUEST

The request is not formatted correctly.

ACCESS_DENIED

The content provider is not permitted to perform the operation (for
example, an operation like “retrieve content keys”).

Google - Confidential

Page 11 of 18

PSSH

Below is the Widevine PSSH format for content providers who wish to synthesis the PSSH
rather than using the ones returned by the API. The structure below is a protocol buffer (see
https://developers.google.com/protocol-buffers/). The process is:

1) Build the protocol buffer message below.

2) Serialize the message to bytes.

3) Base64 encode the bytes.

// Declaration of protocol buffer which is used to encode the data stored in
// Common Encryption (CENC) 'pssh' box Data fields.

syntax = "proto2";

message WidevinePsshData {
enum Type {
SINGLE = 0; // Single PSSH to be used to retrieve content keys.
ENTITLEMENT = 1; // Primary PSSH used to retrieve entitlement keys.
ENTITLED KEY = 2; // Secondary PSSH containing entitled key(s).
}

message EntitledKey {
// ID of entitlement key used for wrapping |key].
optional bytes entitlement key id = 1;
// ID of the entitled key.
optional bytes key id = 2;
// Wrapped key. Required.
optional bytes key = 3;
// IV used for wrapping |key|. Required.
optional bytes iv = 4;
// Size of entitlement key used for wrapping |key]|.
optional uint32 entitlement key size bytes = 5 [default = 32];

// Entitlement or content key IDs. Can only present in SINGLE or ENTITLEMENT
// PSSHs. May be repeated to facilitate delivery of multiple keys in a

// single license. Cannot be used in conjunction with content id or

// group ids, which are the preferred mechanism.

repeated bytes key ids = 2;

// Content identifier which may map to multiple entitlement or content key
// IDs to facilitate the delivery of multiple keys in a single license.

// Cannot be present in conjunction with key ids, but if used must be in all
// PSSHs.

optional bytes content id = 4;

// Crypto period index, for media using key rotation. Always corresponds to

// The content key period. This means that if using entitlement licensing

// the ENTITLED KEY PSSHs will have sequential crypto period index's,
whereas

Google - Confidential Page 12 of 18

https://developers.google.com/protocol-buffers/

// the ENTITLEMENT PSSHs will have gaps in the sequence. Required if doing
// key rotation.
optional uint32 crypto period index = 7;

// Protection scheme identifying the encryption algorithm. The protection

// scheme is represented as a uint32 value. The uint32 contains 4 bytes each
// representing a single ascii character in one of the 4CC protection scheme
// values. To be deprecated in favor of signaling from content.

// 'cenc' (RES-CTR) protection scheme = 0x63656E63,
// 'cbcl' (RES-CBC) protection scheme = 0x63626331,
// 'cens' (RES-CTR pattern encryption) protection scheme 0x63656E73,
// 'cbcs' (RES-CBC pattern encryption) protection scheme = 0x63626373.
optional uint32 protection scheme = 9;

// Optional. For media using key rotation, this represents the duration
// of each crypto period in seconds.
optional uint32 crypto period seconds = 10;

// Type of PSSH. Required if not SINGLE.
optional Type type = 11 [default = SINGLE];

// Key sequence for Widevine-managed keys. Optional.
optional uint32 key sequence = 12;

// Group identifiers for all groups to which the content belongs. This can
// be used to deliver licenses to unlock multiple titles / channels.
// Optional, and may only be present in ENTITLEMENT and ENTITLED KEY PSSHs,

and

// not in conjunction with key ids.
repeated bytes group ids = 13;

// Copy/copies of the content key used to decrypt the media stream in which
// the PSSH box is embedded, each wrapped with a different entitlement key.
// May also contain sub-licenses to support devices with OEMCrypto 13 or

// older. May be repeated if using group entitlement keys. Present only in

// PSSHs of type ENTITLED KEY.

repeated EntitledKey entitled keys = 14;

1177777777777/ 77777777/777/// Deprecated Fields

[ITTTTT7 07777077777 7777 7777

enum Algorithm {

UNENCRYPTED = 0;

AESCTR = 1;
i
optional Algorithm algorithm = 1 [deprecated = true];
optional string provider = 3 [deprecated = true];
optional string track type = 5 [deprecated = true];
optional string policy = 6 [deprecated = true];
optional bytes grouped license = 8 [deprecated = true];

Google - Confidential Page 13 of 18

PSSH in the MPD

In compliance with DASH IF Interoperability Points, Widevine supports insertion of the PSSH in
the DASH MPD file.

The PSSH box, including its header, must be base64 encoded and placed in the <cenc:pssh>
element nested under the <ContentProtection> element. See the example below:

<AdaptationSet mimeType="audio/mp4">
<ContentProtection
schemeIdUri="urn:uuid:edef8ba9-79d6-4ace-a3c8-27dcd51d21led">
<cenc:pssh>AAAANHBzc2gAAAAATe+</cenc:pssh>
</ContentProtection>

Google - Confidential Page 14 of 18

http://dashif.org/w/2014/08/DASH-IF-IOP-v2.90.pdf

Test Player

To help integration and verification, the following can be used to playback Widevine CENC
content:

Demo URLs for players
http://shaka-player-demo.appspot.com/

Content URL
http://storage.googleapis.com/wvmedia/cenc/tears.mpd

Widevine has published an open-source HTML5 DASH player, available at:
github site: https://github.com/google/shaka-player

changelog: https://github.com/google/shaka-player/blob/master/CHANGELOG.md
hosted demo: http://shaka-player-demo.appspot.com/

hosted copy of documentation: http://shaka-player-demo.appspot.com/docs/index.html
hosted copy of the final tutorial from the docs: http://turtle-tube.appspot.com/

Google - Confidential Page 15 of 18

http://shaka-player-demo.appspot.com/
http://storage.googleapis.com/wvmedia/cenc/tears.mpd
https://github.com/google/shaka-player
https://github.com/google/shaka-player/blob/master/CHANGELOG.md
http://shaka-player-demo.appspot.com/
http://shaka-player-demo.appspot.com/docs/index.html
http://turtle-tube.appspot.com/

Appendix

Sample Request
Provider: widevine_test
Content ID: fkj3ljaSdfalkr3j
Policy: empty string

Here is the command to obtain keys for this sample asset:

wget -0 /tmp/key --post-data '{"request":
"ewogICJjb250ZW50X21kIjogIlptdHFNMnhxWVZ0alptRnNhMO016YWcI9PSIsCiAgInRyYWNrcyI6I
FsKICAgIHsgInNR5cGUiOiAiUOQiTIHOsSCiAgICB7ICJ0eXB1IjogIlkhEIiB9LAogICAgeyAidHIwWZST
6ICIBVURJTyIgfQogIF0sCiAgImRybV90eXBlcyI6IFsgIldJREVWSUSFIiBALA0GICIwb2xpY3kiO
1AiTIgp9Cg==", "signature": "kwVLL4xVh9mnlZlPgqiEWNOE+FsvG0y+/oy451XXeIMo=",
"signer": "widevine test" }'
http://license.uat.widevine.com/cenc/getcontentkey/widevine test

The expected response should be:

{"response":"eyJzdGFO0dXMiOiJPSyIsImRybSI6W3sidHIwZSI6I1dJREVWSUSFIiwic31zdGVEX
21kIjoiZWR1ZGhiYTk30WQ2NGF}ZWEzYzgyN2R] ZDUxZDIxZWQ1 fV0sInRyYWNrcyI6W3sidHIwZST
6IINETiwialV5X21kIjoiQXBTNVdaMTFYZUs30FAzS1IAZ2WHF0dz09Iiwia2V5IjoiTz1vdlFEUkImZ
T1oUW11INXdQQStKZz09IiwicHNzaCI6W3siZHIJtX3R5cGU1O1JXSURFVKIORSISImRhAGE1IOiJJaEJ
tYTJdvemJHcGhVMIJtWvd4cmNgTnFTT1BjbFpzRyJ9XSwiZW50aXRsZWRfa2V51jpbXX0seyJ0eXB1T
JOi1SEQiILCJIrzZX1faWQiOiI2MmRxdThzMFhwYTd6MkZtTVBHajJnPTO01iLCJrZXkiO1iJFQXRzSUpRUGQ
1cEZpUlVyVj1MYX13PT0iLCJwc3NoIjpbeyJkeml fdHIwZSI6I1dJREVWSUSFIiwiZGFOYSI6Tk1oQ
mIhMm96YkdwaFUyUmlZV3hyY2pOcVNPUGNsWnNHIn1dLCJ1bnRpdGx1ZF9rZXkiOltdfSx7InR5cGU
101JBVURJTyIsImtl1leVI9pZCI6I1k1MmIOEUEk3VmZPNHLyUDJUUHBKOWCOPSIsImtleSI6Ik1wOWZLY
1pENGANQVN6REU2dk5JOUE9PSIsInBzc2gi0lt7ImRybV90eXB1I1IjoiVO1ERVZJIJTkUILCJkYXRhIjo
1SWhCbWEyb3piR3BoVTJISbV1XeHJjak5bxU09Q0Y2xacO0cifV0sImVudGlObGVkX2t1eSI6W119XSwiY
WxyZWEFkeV91c2VkIjpOcnVI1fQ=="}

Decode the response
cut -d: -f2 /tmp/key | base6d -d -1

{"status":"OK","drm": [{"type":"WIDEVINE", "system id":"edef8ba979d64acea3c827dc
dbld2led"}],"tracks":[{"type":"SD","key 1d":"ApS5WZ11XeK78P3KP6Xqtw==",6"key":"
090vQDRMfe9hQieb5wPA+Jg==","pssh": [{"drm type":"WIDEVINE","data":"IhBmaZozbGphU
Z2RmYWxrcjNgSOPc1lZsG"}],"entitled key":[]},{"type":"HD", "key id":"62dqu8s0Xpa7z
2FmMPGj2g==","key":"EAtsIJQPASpFiRUrV9Layw==","pssh": [{"drm type":"WIDEVINE",6"
data":"IhBma2o0zbGphUZRmYWxrcjNgSOPclzZsG"}],"entitled key":[]},{"type":"AUDIO",
"key 1d":"Y520DPI7VfO4yrP2TPpd9g==",6"key":"Ip9fKbZD4gMASzDE6VNI9A==","pssh":[{
"drm type":"WIDEVINE",'"data":"IhBmaZozbGphU2RmYWxrcjNgSOPclZsG"}],"entitled ke
y":[]}],"already used'":true}

Google - Confidential Page 16 of 18

Signing
The signature is generated as follows.
1. Take the raw value of the “request” field (not in base64 encoding).
{"policy": "test policy", "tracks'": [{"type": "SD"}, {"type": "HD"},
{"type": "AUDIO"}], "conten t id": "dGVzdF9pZFIGOUZQQzBOTw==""}

2. Compute its SHA1 hash (this example uses widevine_test keys).
306814a9 12abd779 deb5dd373 89ca45d9 7328e89c

3. Encrypt the hash with AES CBC. The result is the signature:
46fleeb6e3660acb081106c78e45e190464d87e58f7¢c79143c34da0308ec4bfc

4. Base64 encode the signature:
RVHUb3j ZgrLCBEGx45F4ZBGTYf1+PfHKUPDTaAwjsS/w=

5. Add signature to the request:
{"request":
"eyJwb2xpY3kiO1iAidGVzdF9wb2xpY3kiLCAIdHJIhY2tzIjogW3sidHIwZSI6ICJIJTRCJIILCB
7INR5cGUi01AISEQI fSwgeyJ0eXB1IjogIkFVREIPIN1dLCAIY29udGVudF9pZCI6ICJIkR1Z
6ZEY5cFpGOUdPVVPRUXpCTIR3PT01 fQ=="",
"signer": "widevine test",
"signature": "RvHubjZgrLCBEGx45F4ZBGTYf1+PfHkUPDTaAwjsS/ w=""}

For integration tests, you can use “widevine_test” as the signer. Its AES key is
Oxla, 0Oxe8, Oxcc, 0xdO, Oxe7, 0x98, 0x5c, 0xcO,

Oxb6, 0x20, 0x3a, 0x55, 0x85, 0x5a, 0x10, 0x34,

Oxaf, Oxc2, 0x52, 0x98, 0x0e, 0x97, 0x0c, 0Oxa9,

0x0e, 0x52, 0x02, 0x68, 0x9f, 0x94, 0x7a, 0xb9

The IV is

Oxd5, 0x8c, 0xe9, 0x54, 0x20, 0x3b, 0x7c, 0x9a,

0Ox9%a, 0x9d, Ox46, 0x7f, 0x59, 0x83, 0x92, 0x49

Google - Confidential Page 17 of 18

Entitlement Keys

Entitlement Licensing is a feature designed to improve the handling of content that requires key
rotation and content grouping. More information will be made available in the Widevine Group
Licensing document (coming soon).

Google - Confidential Page 18 of 18

