CUJWIDEVINE

Modular DRM
Working with Foreign Content Keys

version 1.2

Purpose
Summary
Encryption
Playback
Requirements
Construction of the Widevine PSSH
PSSH Insertion
Insertion of PSSH into the content
Insertion of PSSH into the MPD
Example of PSSH insertion in MPD
Playback using foreign content key(s)
Using the Widevine Cloud License Service
content_key specs.track_type
content_key specs.key_id
Example of key _id
Case Study - Using PlayReady-generated Key ID
Problem Description
Generate a Widevine PSSH using a converted GUID
Using an alternate set of Key IDs

Appendix
Generation of a Widevine PSSH Box
Client security level (content_key_specs.security level)
HDCP Output Matrix
Conversion to Widevine-compatible Key ID format

© 2016 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to
change and any expected future products, features or functionality will be provided on an if and when available basis. Note that the
descriptions of Google’s patents and other intellectual property herein are intended to provide illustrative, non-exhaustive examples
of some of the areas to which the patents and applications are currently believed to pertain, and is not intended for use in a legal
proceeding to interpret or limit the scope or meaning of the patents or their claims, or indicate that a Google patent claim(s) is
materially required to perform or implement any of the listed items.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 2 of 17

Purpose

This document describes the issues and solutions to address multiple DRM system
interoperability with a single DASH (CENC) content library.

Summary

An overview of Widevine Modular DRM (the use of Encrypted Media Extensions, DASH and a
CDM) is available here.

Encryption
e The Common Encryption (CENC) specification dictates content must be encrypted using
a standard AES algorithm with a 128-bit Content Key, independent of any DRM system.
o The key size is 128-bit.
o Each key is associated with a 128-bit unique Key ID.
m The Key ID field acts as a unique identifier for the Content Key. It is used
to maintain mapping of Content Keys to encrypted content.
m In alive streaming use case, Content Keys must change at predefined
time intervals governed by key rotation parameters.
e For a given time interval, the correct Content Key must be used for
decryption.
e To keep track of the correct Content Key to be used, the Key ID is
used to maintain the index of Content Keys to encrypted content.
e Encrypted content is annotated with an identification header, called a PSSH (Protection
System Specific Header). CENC content requires the creation of a PSSH (specific to a
DRM vendor) which is used for playback.
o The PSSH is used to identify a specific DRM system and the metadata needed to
identify the content in a license request.

o The Widevine identification string in a PSSH is
edef8ba9-79d6-4ace-a3c8-27dcd51d21ed

o Alist of DRM system IDs is available here.

Content (encryption) Keys can be obtained from:
e Widevine Cloud License Service
o A Content Key may be requested by specifying a Content ID in a key request.
o The license services manages the mapping of Content ID to Content key
m Access to a Content Key is always referred to by the Content ID.
e Using third-party Content Keys with a Widevine License Service
o The Content Key does not originate from the Widevine Cloud License Service or
the Widevine License SDK.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 3 of 17

http://www.w3.org/TR/2014/WD-encrypted-media-20140828/cenc-format.html
https://storage.googleapis.com/wvdocs/Widevine_Modular_DRM_Architecture_Overview_1.0.pdf
http://www.w3.org/TR/2014/WD-encrypted-media-20140828/cenc-format.html
https://w3c.github.io/encrypted-media/cenc-format.html#common-system
https://w3c.github.io/encrypted-media/cenc-format.html#common-system
http://dashif.org/identifiers/protection/

Playback

e Content playback is managed and controlled by the player application which interfaces
with the DRM client and DRM license service.
e The Content Decryption Module (CDM) is the specific DRM client for a platform.
o It obtains the PSSH information to generate a request and receive a license to
decrypt content.
m The implementation and operation of a CDM varies by DRM system.

Requirements

There are two requirements to enable use of encrypted content from other DRM systems (i.e.
content that does not originate from the Widevine DRM system used for playback):
e Widevine PSSH
The presence of a Widevine PSSH box is required for compatibility and use with the
Widevine DRM system.
e The Content Key
Content that is encrypted outside of the Widevine ecosystem will use content key(s) that
are not stored within the Widevine ecosystem.
When license requests are made for such content, these Content Key(s) must be
provided for proper license generation. This is accomplished by using the
content_key specs method as described in the Widevine Proxy Integration document.

Construction of the Widevine PSSH

The format of a Widevine PSSH box is as follows:

4 byte size (includes the header)

4 byte type (0x 70 73 73 68)

1 byte version (@x ©0)

3 bytes flags (0x 00 00 00)

16 byte system ID (Widevine - edef8ba979d64acea3c827dcd51d21ed)
4 byte data size (lets call this N)

N bytes of serialized protection-system-specific data

Field Byte size | Value Description
size 4 byte Calculated based on size of the entire PSSH box, includes
input variables the header

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 4 of 17

https://w3c.github.io/encrypted-media/#definitions
http://storage.cloud.google.com/wvdocs/Widevine_Modular_DRM_Proxy_Integration_1.9.pdf

specific data string

WidevineCencHeader
proto message

type 4 byte 0x 70 73 73 68 stands for “pssh”

version 1 byte 0x 00 stands for version 0

flags 3 byte 0x 00 00 00 stands for flags =0

system ID 16 byte edef8ba979d64acea3 | Widevine system ID
c827dcd51ld2led

data size 4 byte Calculated based on N bytes of PSSH data string
input variables

protection system N bytes Serialized See section below

The format of the PSSH data is defined by the WidevineCencHeader Google Protocol Buffer as

shown below.

For additional details, please refer to the Widevine Common Encryption APl document.

AESCTR = 1;
1

message WidevineCencHeader {
enum Algorithm {
UNENCRYPTED = 0;

optional Algorithm algorithm
repeated bytes key_id = 2;

// Content provider name.
optional string provider = 3;

1;

// A content identifier, specified by content provider.
optional bytes content_id = 4;

// Crypto period index, for media using key rotation.
optional uint32 crypto_period_index = 7;

// Track type. Acceptable values are SD, HD and AUDIO. Used to
// differentiate content keys used by an asset.
optional string track_type =

// The name of a registered policy to be used for this asset.
optional string policy = 6;

A reference Python script to demonstrate the construction of a Widevine PSSH is included in

the Appendix of this document.

Widevine - Modular DRM - Working with Foreign Content Keys

rev 1.2 - 3/2/2016 - Page 5 of 17

http://storage.cloud.google.com/wvdocs/Widevine_Modular_DRM_Encryption_API_1.4.pdf

PSSH Insertion

This section describes methods to annotate content with a Widevine PSSH:

Insertion of PSSH into the content
The PSSH box can be constructed and inserted in the content header at the time of content
encryption.

For example, the Widevine eDASH-packager generates the PSSH box by embedding the
information used for encryption and inserts it in the content header.

Insertion of PSSH into the MPD

Modification of previously-encrypted content by third-party DRM systems is non-trivial and time
intensive. In such cases, the PSSH box can be constructed independently (see above) and
inserted in the content's DASH MPD file.

The MPD is a content playlist, from which the player application can be configured to retrieve
the PSSH information.

Example of PSSH insertion in MPD

Note: The value of the Widevine PSSH must be base64-encoded.

<AdaptationSet mimeType="video/mp4" subsegmentAlignment="true">
<ContentProtection schemeIdUri="http://example.com/myDrmSchema">
<cenc:pssh>
AAAAV3Bzc2gAAAAA7e+LgXnWSs6jyCTc1ROh7QAAADCIARIgMzI30TcXNTIzZOTZmNGYOM]
NINWYINDZIMmI1M]jZ1NWEaBWN3aXAxIgZOZXNOMDEqGAKhE
</cenc:pssh>
</ContentProtection>

<Representation id="142" codecs="avc1l.4d4015" width="426" height="240"

startWithSAP="1" bandwidth="282817">
<BaseURL>oops_cenc-20121114-142.mp4</BaseURL>
<SegmentBase indexRange="1739-2358" indexRangeExact="true">

<Initialization range="0-1738"/>

</SegmentBase>

</Representation>

<Representation>

</Representation>

</AdaptationSet>

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 6 of 17

https://github.com/google/edash-packager
http://example.com/myDrmSchema

The Widevine open-source DASH HTMLS5 player (Shaka) supports the PSSH insertion in the
MPD:
e Sample MPD
e Supported Classes
o shaka.player.DrmSchemelnfo
o shaka.dash.mpd.ContentProtection
e Working Shaka Player code

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 7 of 17

https://github.com/google/shaka-player
https://storage.googleapis.com/wvmedia/cenc/h264/tears.mpd
http://shaka-player-demo.appspot.com/docs/shaka.player.DrmSchemeInfo.html
http://shaka-player-demo.appspot.com/docs/shaka.dash.mpd.ContentProtection.html
https://github.com/google/shaka-player/blob/v1.2.2/app.js#L596

Playback using foreign content key(s)

The Widevine License service uses a 128-bit Content Key in order to generate a valid license.
e The Content Key is accompanied by a 128-bit Key ID.
e The Key ID is a unique identifier for a Key.

In the case of third-party encrypted content, this Content Key must be provided in the request to
be used in the license output.

With the use of a self-generated Widevine PSSH and third-party Content Keys, it is important to
ensure that the values in the generated PSSH must match the parameters of the license
request:

e KeylID

e Content Key

e Track Type

Using the Widevine Cloud License Service
It is important to note:
e The content’'s PSSH parameters must match the license request parameters.
e The license request parameters cannot reference values that do not exist in the
content’'s PSSH.

From the Widevine Proxy Integration document, the table below denotes the available fields:

(Required fields are highlighted in yellow.)

Name Value Description

content_key specs. string A track type name.

track_type
If content_key_specs is specified in
the license request, make sure to
specify all track types declared in
the pssh explicitly.

content_key_specs. Base64 encoded Content key to use for this track.

key string If specified, the track_type or

key_id is required.

This option allows the content
provider to inject the content key
for this track instead of letting
Widevine license server generate or
lookup a key.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 8 of 17

http://storage.googleapis.com/wvdocs/Widevine_Modular_DRM_Proxy_Integration_1.9.pdf

content_key_specs.key_id Base64 encoded Unique identifier for the key.
string

binary, 16 bytes

content_key_specs. uint32 Defines client robustness
security_level requirements for playback.

1 - Software-based whitebox crypto
is required.

2 - Software crypto and an
obfuscated decoder is required.

3 - The key material and crypto
operations must be performed within
a hardware backed trusted execution
environment.

4 - The crypto and decoding of
content must be performed within a
hardware backed trusted execution
environment.

5 - The crypto, decoding and all
handling of the media (compressed
and uncompressed) must be handled
within a hardware backed trusted
execution environment.

See Appendix.

content_key specs. string - one of: Indicates whether HDCP is required.
required_output_protection.hdcp HDCP_NONE,

HDCP_V1,

HDCP_V2 See Appendix.

content_key_specs.track_type

This is a Widevine-specific parameter that may not be present in other DRM implementations. It
represents the resolution of a track and can hold one of three values - HD, SD and AUDIO.

The presence of a track_type value allows for greater granularity on the application of license
rules.

A missing track_type field will prevent restriction of playback for a specific track for the following
parameters:

e HDCP

e EME security level

content_key_specs.key_id

This parameter represents the unique identifier for a Content Key and is required to maintain the
sequence of Content Keys to be used (with key rotation).

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 9 of 17

The actual value of a Key ID is immaterial as long as it is associated correctly to the
content key. The association of Key ID to third-party Content Keys is the responsibility of the
content provider.

If key rotation is not required, the Key ID can be set to a static value (e.g. 0). We recommend
the use of the Key ID for identification purposes.
e A combination of track_type and Key ID will accurately identify a media track (via its
PSSH) within a compilation of media described in an MPD.

Example of key id

The code below demonstrates the use of track_type (in 3 variations) in combination with Key 1D
in order to enforce device security level and output protection requirements.

"content_key_specs":[

{
"key _id":"MGRmM3jVjYzUtOWFkMS@1MihiLTkwZGMtNTYyY2QxODEXODNi",
"track_type":"SD",
"key" :"Pv38THb6rTQbIpzgo4/qag==",
“security level”:”3”,
“required_output_protection.hdcp®:”’HDCP_NONE>

¥

{
"key_id":"NzV1YThiYWMtZjg3Yy0Q1lYzMxLWFmYTYtNWY3YmUwNJEIMGUS",
"track_type":"HD",
"key" :"xiE14IKMIRKxXSPBQL+HksA==",
“security_level”:”5”,
“required_output_protection.hdcp”:”HDCP_V1”

¥

{
"key_id":"NDczMWNhNzItOWEXYy@1YjQ1LThjMTMtMGY4MDIiMDRiIMWNTG",
"track_type":"AUDIO",
"key":"y9DDm30ttTO7GgXfxKMwdQ=="

}

]

The Widevine ecosystem allows you to encrypt each individual track type with a different
Content Key. Each Content Key is paired with a distinct Key ID.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 10 of 17

The tabular version of the configuration in the above example is as follows:

Track type Security Level Output Protection
SD 3 HDCP_NONE

HD 5 HDCP_V1

AUDIO No restriction No restriction

Including track type and Key ID values when annotating third-party encrypted content with a
Widevine PSSH is highly recommended for the application of business rules on a granular level.

Widevine - Modular DRM - Working with Foreign Content Keys

rev 1.2 - 3/2/2016 - Page 11 of 17

Case Study - Using PlayReady-generated Key ID

Playready-generated SmoothStreaming content that is encrypted using CENC has a unique
way of representing Key IDs. This Wikipedia link explains the Playready GUID structure.

Problem Description

The Widevine DRM ecosystem expects the Key ID to be in Big Endian format, whereas the
Microsoft Key ID is in inverted byte order.

The Key ID used to encrypt content in a commonly encrypted environment can be extracted
from the PSSH data typically present in the header segment of the encrypted content.

When the Key ID is Playready-generated, the binary/hex Key ID string extracted from the PSSH
is found to be in a non-Big-Endian byte order format. If used as-is when making a license
request with the Widevine License server, it would result in a playback failure.

There are two methods to address this issue:

Generate a Widevine PSSH using a converted GUID

In order to make Playready encrypted content compatible with the Widevine CDM, the content
needs to be re-packaged with a Widevine PSSH. Re-packaging in this context does not
necessarily mean re-encryption, CENC allows for content to contain multiple PSSH boxes, each
representing a different DRM vendor.

This translates to
e building a PSSH box with the same Key ID as that of the Playready PSSH
e providing the same Key ID and Content Key values when making a license request

Content Re-packaging
In order to annotate pre-encrypted Playready content with a Widevine PSSH, it is necessary to
ensure that the correct format of the Key ID is used.

In other words, the Key ID should be converted to Big Endian format when generating a
Widevine PSSH. A sample script to convert Microsoft GUID to Big Endian format is provided in
the Appendix below.

Content Playback
A base64-encoded version of the converted Key ID needs to be specified in the license request
using content_key specs.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 12 of 17

http://www.w3.org/TR/2014/WD-encrypted-media-20140828/cenc-format.html
http://en.wikipedia.org/wiki/Globally_unique_identifier#Text_encoding
http://www.w3.org/TR/2014/WD-encrypted-media-20140828/cenc-format.html#init-data

Using an alternate set of Key IDs

The only imperative is to ensure that the Key ID and content keys match in both the PSSH and
license request.

You may use a separately-assigned range of Key IDs to be associated with the content key.
e This approach avoids the complexity of converting Key IDs from Microsoft GUID formats.
e The onus of maintaining the appropriate sequence of Key IDs, mapping of Key ID to
content key is outside the scope of the Widevine ecosystem.

Successful decryption of content will take place as long as the Key ID in license issued
matches the Key ID in the PSSH of the content.

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 13 of 17

Appendix

Generation of a Widevine PSSH Box

The code below is a reference Python script to construct a Widevine PSSH. This script requires
the WidevineCencHeader proto to be built and included as a dependency.

#!/usr/bin/python
"""Reference Widevine Modular DRM PSSH box generator.

Reference script to generate a Widevine PSSH using custom content keys.

import base64

import binascii

import struct

import widevine_pssh_pb2

WIDEVINE_SYSTEM_ID = "edef8ba979d64acea3c827dcd51d21led”
PSSH Generation for SD_HD tracks #i##

widevine_pssh_string = widevine pssh_pb2.WidevineCencHeader ()
widevine_pssh_string.algorithm = 1
widevine_pssh_string.key_id.append(bytes("<your key id>"))
widevine_pssh_string.provider = "<your provider>"
widevine_pssh_string.content_id = bytes("<optional content id>")
widevine_pssh_string.track_type = "<SD, HD OR Audio>"

data = widevine_pssh_string.SerializeToString()
pssh_box_size = 12 + 16 + 4 + len(data)

pssh = struct.pack(">III", pssh_box_size, 0x70737368, 0)
pssh += binascii.unhexlify(WIDEVINE_SYSTEM_ID)

pssh += struct.pack(">I", len(data))

pssh += data

assert pssh_box_size == len(pssh)

pssh_hex = binascii.hexlify(pssh)
pssh_base64 = base64.standard_b64encode(pssh)

Verification

print "\npssh proto : \n" + str(widevine_pssh_string)

print "Hex pssh data (to be used to package content): \n" + binascii.b2a_hex(data)

print "Hex pssh box (to be used as the Widevine PSSH header in prepackaged content): \n" +
pssh_hex

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 14 of 17

print "Base64 of pssh (to be used in the MPD): \n" + pssh_base64

Output of the above script with sample values would look like:

pssh proto :

algorithm: AESCTR

key_id: "32797152396f4f423e5f546e2b526e5a"
provider: "widevine_test"

content_id: "testol"

track_type: "HD"

Hex pssh data (to be used to package content):
0801122033323739373135323339366634663432336535663534366532623532366535611a0d7769646576696€65
5f74657374220674657374303122024844

Hex pssh box (to be used as Widevine PSSH header in prepackaged content):
000000517073736800000000edef8ba979d64aceal3dc827dcd51d21ed000000310801122033323739373135323339
366634663432336535663534366532623532366535611a0d7769646576696e65517465737422067465737430312a
024844

Base64 of pssh (to be used in the MPD):
AAAAX3Bzc2gAAAAA7e+LgXnWSs6jyCTc1ROh7QAAADS8IARIgMZzI30TcXNTIzZOTZmMNGYOMNINWYINDZIMmIIMGZINWEa
DXdpZGV2aW51X3R1c3QiBnR1c3QwMSOCSEQ=

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 15 of 17

Client security level (content_key_specs.security_level)

A license may be issued with a requirement for the minimum client security level.

The table below illustrates the general mapping between the EME security level definitions and
Widevine device robustness levels.

Definition Value Widevine Device Security Level
SW_SECURE_CRYPTO 1 3
SW_SECURE_DECODE 2 3
HW_SECURE_CRYPTO 3 2
HW_SECURE_DECODE 4 1
HW_SECURE_ALL 5 1

HDCP Output Matrix

The table below is a results matrix for setting output protection HDCP_V1 in the license request.

OP Error indicates playback will fail with an output protection error.

HDCP v1 No External
Required Display
ChromeOS

ARM OK
ChromeOS x86 Ok

Linux OP Error
Mac OK
Windows OK

HDCP-compliant
External Display

OK

OP Error
OP Error
OP Error

OK

Non-HDCP-compli Analog
ant External
External Display Display ChromeCast AirPlay

OP

OP

OP

OP

OP

Error N/A OP Error N/A
Error N/A OP Error N/A
Error OP Error OK N/A
Error OP Error OK OP Error
Error OP Error OK N/A

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 16 of 17

Conversion to Widevine-compatible Key ID format

#!/usr/bin/python

import binascii
import uuid

def byteswap_hex_guid(hex_guid):

Converts a little-endian hexadecimal GUID to big-endian, or vice-versa.
return uuid.UUID(bytes_le=binascii.unhexlify(hex_guid)).hex

hex_guid = '01234567890123456789012345678901"' # YOUR GUID GOES HERE
assert len(hex_guid) == 32

print 'original =', hex_guid
print 'swapped ="', byteswap_hex_guid(hex_guid)

Widevine - Modular DRM - Working with Foreign Content Keys
rev 1.2 - 3/2/2016 - Page 17 of 17

